44 research outputs found

    Photovoltaic Energy Yield Improvement in Two-Stage Solar Microinverters

    Get PDF
    The focus in this paper is on the two-stage photovoltaic (PV) microinverters using a buck-boost dc/dc front-end converter. Wide input voltage range of the front-end converter enables operation under shaded conditions but results in mediocre performance in the typical voltage range. These microinverters can be controlled with either fixed or variable dc-link voltage control methods. The latter improves the converter efficiency considerably in the range of the most probable maximum power point (MPP) locations. However, the buck-boost operation of the front-end converter results in noticeable variations of the efficiency across the input voltage range. As a result, conventional weighted efficiency metrics cannot be used to predict annual energy productions by the microinverters. This paper proposes a new methodology for the estimation of annual energy production based on annual profiles of the solar irradiance and ambient temperature. Using this methodology, quantification of the annual energy production is provided for two geographical locations

    Black Start and Fault Tolerant Operation of Isolated Matrix Converter for dc Microgrids

    Get PDF

    Analysis and design of asymmetric quad-active-bridge converter

    Get PDF

    Grid Integration of DC Buildings: Standards, Requirements and Power Converter Topologies

    Get PDF
    Residential dc microgrids and nanogrids are the emerging technology that is aimed to promote the transition to energy-efficient buildings and provide simple, highly flexible integration of renewables, storages, and loads. At the same time, the mass acceptance of dc buildings is slowed down by the relative immaturity of the dc technology, lack of standardization and general awareness about its potential. Additional efforts from multiple directions are necessary to promote this technology and increase its market attractiveness. In the near-term, it is highly likely that the dc buildings will be connected to the conventional ac distribution grid by a front-end ac-dc converter that provides all the necessary protection and desired functionality. At the same time, the corresponding requirements for this converter have not been yet consolidated. To address this, present paper focuses on various aspects of the integration of dc buildings and includes analysis of related standards, directives, operational and compatibility requirements as well as classification of voltage levels. In addition, power converter configurations and modulation methods are analyzed and compared. A classification of topologies that can provide the required functionality for the application is proposed. Finally, future trends and remaining challenges pointed out to motivate new contributions to this topic

    Smart transformer universal operation

    Get PDF

    Enhancing grid-forming converters control in hybrid AC/DC microgrids using bidirectional virtual inertia support

    Get PDF
    This paper presents a new grid-forming strategy for hybrid AC/DC microgrids using bidirectional virtual inertia support designed to address weak grid conditions. The stability of hybrid AC/DC microgrids heavily relies on the AC mains frequency and the DC-link voltage, and deviations in these factors can lead to undesirable outcomes such as load curtailments and power system congestions and blackouts. This paper introduces a unique approach that leverages bidirectional virtual inertia support to enhance the stability and reliability of hybrid AC/DC microgrids under weak grid conditions. The proposed strategy employs virtual inertia as a buffer to mitigate rapid changes in DC-link voltage and AC frequency, thereby enhancing system stability margins. This strategy significantly contributes to a more stable and reliable grid operation by reducing voltage and frequency fluctuations. A standard hybrid AC/DC microgrid configuration is used to implement the bidirectional virtual inertia support, where a bidirectional interlinking converter control is adjusted to deliver inertia support to both the AC and DC subgrids. This converter utilizes the DC grid voltage and AC grid frequency as inputs, effectively managing active power balance and implementing auxiliary functions. Extensive simulations are conducted under weak grid conditions and standalone mode to validate the effectiveness of the proposed strategy. The simulation results demonstrate a remarkable improvement in frequency nadir, rate-of-change-of-frequency (RoCoF), and DC bus voltage deviation in the hybrid AC/DC microgrids. The bidirectional virtual inertia support substantially reduces voltage and frequency fluctuations, enhancing the microgrid stability and resilience. There is an improvement of over 45% and 25% in the frequency deviation and voltage deviation, respectively, achieved through implementing the proposed control strategy

    Wide-Range Operation of High Step-Up DC-DC Converters with Multimode Rectifiers

    No full text
    This paper discusses the essence and application specifics of the multimode rectifiers in high step-up DC-DC converters. It presents an overview of existing multimode rectifiers. Their use enables operation in the wide input voltage range needed in highly demanding applications. Owing to the rectifier mode changes, the converter duty cycle can be restricted to a range with a favorable efficiency. It is shown that the performance of such converters depends on the front-end inverter type. The study considers current- and impedance-source front-end topologies, as they are the most relevant in high step-up applications. It is explained why the full- and half-bridge implementations provide essentially different performances. Unlike the half-bridge, the full-bridge implementation shows step changes in efficiency during the rectifier mode changes, which could compromise the long-term reliability of the converter. The theoretical predictions are corroborated by experimental examples to compare performance with different boost front-end inverters
    corecore